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Background 

 Unit loads are the form by which most industrial and consumer products are stored, 

shipped, and distributed.  Exclusive of the product itself, the unit load portion of the supply chain 

consists of three basic components  

Packaging 

Pallets 

Unit load handling equipment 

The reaction of the products to the rigors of the movement through supply chains, from 

manufacturer to the customer, is a consequence of how these components mechanically interact.  

These mechanical interactions are both static and dynamic.  The interface between the packaged 

product and the stresses exerted by the unit load handling, storage, and shipping devices is most 

often a pallet.  Therefore, most of these dynamic and static stresses pass through the pallet prior 

to exposure of the package and product.  When designing distribution packaging for unitized 

handling, storage, and shipping, the compression strength of the packaging becomes a major 

design criteria.  Compression occurs when stacking of the packaged product on pallets and the 

subsequent stacking of unit loads, one on top of another, during storage and transportation.  

Often the highest compression stress occurs when unit loads are stack stored in warehouses or  
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distribution centers.  Under these conditions, the compression strength to which we design rigid 

packaging such as corrugated containers, plastic pails, drums, bottles, etc., becomes a function 

of the bearing area between the pallet deck and the packaging and the applied force.  With a 

wood pallet, it is widely recognized that the bearing area is a function of deck design and 

specifically spacing between deckboards of the top and bottom decks of the pallet.  What is not 

well understood is how the stiffness of the pallet decks affects the bearing area and consequently 

the compression stress on the packaging and its contents.  The potential for non-uniform stress 

distributions and stress concentrations at the interface between the pallet deck and packaged 

product is shown schematically in Figure 1 and is associated with deflection of the pallet deck.  

Han et al. (2007) and Yoo (2008) showed that the pallet deck deforms under load and this 

reduces significantly the effective bearing area.  Using topographical mapping techniques and 

FEA modeling, they predicted stress amplification factors of five to six times the average applied 

stress.  The research reported here is the development of a generalized, closed form, 

mathematical model that more accurately predicts the compression stress distribution at the 

interface between packaging and the pallet deck, as a function of packaging stiffness and pallet 

deck stiffness.  It has been discovered, that with some modification, the engineering principles of 

an elastic beam supported by an elastic foundation, predictions of compression stress 

distributions at the interface are possible Yoo (2011). 

Model Development 

 To apply the principles of a beam supported by a deformable elastic foundation to the 

interface between a pallet deck and distribution packaging, the beam shall represent the pallet 

deck and the foundation shall represent the packaging and its contents.  As shown in Figure 2, 

the actual situation within a unit load has been inverted for this application.  The pallet section 

represents a deckboard spanning two stringers or block segments.  General solutions for the 

beam deflection when supported on a deformable elastic foundation of stiffness, k, are shown in 

Figure 3. 
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edge of the stringer.  This is determined from a measured joint rotation modulus.  This method of 

modeling the stiffness of semi-rigid nailed connections in pallets has been validated by 

Samarasinghe (1987), among other researchers.  In a similar way, models were developed 

assuming completely free ends and fixed ends.  Free ends were unrestrained and fixed ends 

were represented by springs of infinite stiffness at the connections between the deck and stringer.  

The reader is referred to Yoo (2011) for the derivation of these relationships.  This represents the 

full range of joint fixity that can occur in pallet connections.  The model inputs are the elastic 

modulus (MOE) of the pallet deck, the joint rotation modulus, (K), for semi rigid connections, and 

the packaging stiffness (k).  From the model predictions of packaging deformation along the 

length of the interface and the stiffness of the packaging, the force along the beam at the 

interface can be calculated using to Hook’s Law.  The stresses are assumed to vary 

symmetrically and in only one geometric dimension along the length of the pallet deck 

component.  

Model Validation 

 Measurement of test specimen stiffness 

 To validate the model, a common pallet and packaging configuration was used and 

simulated.  This included a corrugated container supported by a wood pallet section.  Example 

pallet sections are shown in Figure 5.  The deck spanning the stringer segments was 18 inches 

long and 3.5 inches wide. 
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compression of the corrugated container.  The container stiffness was measured along the box 

length and included in the corner support.  The average stiffness value was used as inputs into 

the model.  These model inputs are summarized in Table 1.  Three replicate rotation modulus and 

package stiffness tests were performed.   

Table 1.  Measured properties used as inputs into the compression stress model 

MOE (lbs./in.2) End 
Fixity 

Rotation 
Modulus (in.-
lbs./radian) 

Packaging stiffness 
(lbs./in.) 

 3/4”  3/8”  3/4” 3/8” Bottled 
box 

Empty 
box 

Flour 
sacks 

A-1 1340000 B-1 1081000 Free 6494 5921 1345 854 618 
A-2 1236000 B-2 1077000 Free      
A-3 1246000 B-3 1082000 Free      
A-4 1118000 B-4 1023000 Semi      
A-5 1178000 B-5 1626000 Semi      
A-6 730700 B-6 1408000 Semi      
A-7 854500 B-7 716800 Fixed      
A-8 1238000 B-8 822800 Fixed      
A-9 1173000 B-9 1131000 Fixed      
 

Measurement of Compresses Stresses at the Pallet Deck and Package Interface 

 Two pressure sensor mats were used to directly measure the pressure between the 

pallet deck and the corrugated container.  The sensitivity of the pressure sensors was 0-5 and 0-

30 psi.  A strain gage sensor mat is shown in Figure 10.  (The sensel size was 0.25 inch square.) 

The test setup for measuring the compression stress at the interface between the package and 

the pallet deck is shown in Figure 11.  The load was applied using a 10 kip servo-hydraulic MTS 

test machine to a level of 6 to 7 pounds per square inch.   

Results 

 Figure 12 is a typical visual representation of the stress distribution between the 

packaging and pallet deck for both sensors, as a function of package and pallet deck stiffness.  



The red denotes high stress and the block, zero stress.  It is clear that the compression stresses 

are high over the stringer segments and very low between these areas of deck support.   

Data within the sensitivity range of each of the two mats was then merged into one data 

set as shown in the example in Figure 13.  Assuming symmetry, doubled the usable observations 

of the stress gradients.  Figures 14, 15, and 16 are plots of the measured and predicted 

compression stresses for the three different connection fixities.  The average applied stress 

during the test varied from 6.25 to 6.82 psi.  With the exception of the free end, low stiffness pallet 

section, the agreement between predicted and measured is good.  The poor correlation of the low 

stiffness pallet section is due to the lack of measured stress above the actual 24 psi limit of the 

sensors.  The maximum predicted  compression stresses were as high 50 psi over the pallet 

posts or stringers while packaging between the stringers is under negligible compression stress.   

 

Figure 10.  Photograph of the strain gage pressure sensor mat used to measure the 

pressure distribution between the package and the pallet deck (sensel dimension 0.25 x 

0.25 inches). 
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Conclusions 

1.  A modification of the principles of an elastic beam supported by an elastic foundation 

can be used to predict the compression stress distributions between pallet decks and 

packaged products.  The required inputs are the compression stiffness of the 

packaged product and the bending stiffness of the pallet deck. 

2. The compression stresses at the interface are not uniformly distributed across the 

pallet deck.  Stress concentrations occur over pallet stringers and packaging. 

3. Average applied compression stress levels of 6-7 psi resulted in compression 

stresses on packaging from 0 to over 50 psi for the specimens tested.  The 

compression stress amplification or intensity can be as high as five to ten times the 

average applied stress. 

4. Stiffer pallet decks and stiffer connections between the pallet deck and stringers or 

blocks, significantly reduces the maximum compression stress on the packaged 

product. 

5. Pallet design can be used to reduce the compression stresses on packaging and 

reduce packaging cost. 
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